
helloQt is the Qt development  
branch of Bergx2 GmbH 

 
Fürstenstr. 15 

80333 München 
Germany 

 
info@helloqt.de 
www.helloqt.de 

                          

 

© helloQt.de P a g e  1  o f  4  

 

 

Implementing a timer-based action in QML with Qt  
11 February 2025, by Lucas Moreira de Oliveira 

 
The following use case is based on Qt application which manages digital signage displays. The 
QML Timer component controls the cursor activation based on user activity. This component 
allows developers to schedule actions after time delay or at regular intervals. 

In this blog post, we will show how to use the Timer component to automatically hide the cursor 
in a digital signage application we developed at Begx2 GmbH. The goal is to hide the cursor after 
15 seconds of inactivity, keeping the screen clean and free from distractions. 

Understanding the QML Timer  

The Timer element in QML provides a straightforward way to handle timed events. It can be 
configured to trigger once after a delay or repeatedly at specified intervals. Here is a quick look at 
its key properties: 

◼ Interval: Specifies the duration in milliseconds before the timer triggers. 
◼ Running: A boolean that determines whether the timer is active. 
◼ Repeat: If true, the timer runs continuously at the specified interval. 
◼ OnTriggered: The event handler that executes when the timer fires. 

Implementing cursor deactivation on inactivity 

For our digital signage use case, we need a timer that resets every time the user interacts with 
the system. If no activity is detected for 15 seconds, the cursor disappears. Below is an 
implementation using QML and Qt’s MouseArea component: 

import QtQuick 

import QtQuick.Layouts 

import ui as UI 

 

Window { 

    id: _window 

    property real globalScale: Math.min(_window.width / 1920, _window.height / 

1080) 

    visible: true 

    visibility: UI.AppController.isAppAlwaysFullscreen ? Window.FullScreen : 

Window.Windowed 

    title: qsTr("ScreenWay Media Player") 

    width: Screen.width 

    height: Screen.height 

https://www.helloqt.de


  

 
© helloQt.de    P a g e  2  o f  4  

 

    color: "black" 

 

    // 1) Properties for hiding/showing cursor 

    property bool mouseHidden: true   // We want the cursor hidden by default 

    property real lastMouseX: 0 

    property real lastMouseY: 0 

 

    // 2) Timer for inactivity (15 seconds) 

    Timer { 

        id: inactivityTimer 

        interval: 15000  // 15 seconds 

        repeat: false 

        running: false 

        onTriggered: { 

            // Hide the cursor after 15s 

            mouseHidden = true 

        } 

    } 

 

    // 3) Full-screen MouseArea that tracks movement but does NOT accept 

clicks 

    //    so that the existing MouseArea for settings popup still works. 

    MouseArea { 

        id: fullScreenTracker 

        anchors.fill: parent 

        hoverEnabled: true 

        acceptedButtons: Qt.NoButton 

        z: 0 

 

        // Switch between blank and arrow cursor 

        cursorShape: mouseHidden ? Qt.BlankCursor : Qt.ArrowCursor 

 

        onPositionChanged: function(event) { 

            // If user moves mouse ≥ 10 pixels in any direction, show the 

cursor 

            var dx = event.x - lastMouseX 

            var dy = event.y - lastMouseY 

            if (Math.sqrt(dx * dx + dy * dy) >= 10) { 

                if (mouseHidden) { 

                    mouseHidden = false 

                } 

                // Restart the 15-second timer every time we detect 

significant movement 

                inactivityTimer.restart() 

            } 

            lastMouseX = event.x 

            lastMouseY = event.y 

        } 

    } 



  

 
© helloQt.de    P a g e  3  o f  4  

 

 

    MouseArea { 

        x: parent.width - width 

        z: 1 

        width: UI.Constants.settingsOverlayOpenAreaSize 

        height: UI.Constants.settingsOverlayOpenAreaSize 

 

        scale: _window.globalScale 

 

        hoverEnabled: true 

        cursorShape: containsMouse ? Qt.PointingHandCursor : Qt.ArrowCursor 

 

        onClicked: { 

            _settings.open() 

        } 

    } 

 

    Item { 

        id: _rootItem 

        rotation: UI.AppController.orientation 

        anchors.fill: parent 

 

        StackLayout { 

            id: _screensLayout 

            anchors.fill: parent 

            currentIndex: UI.AppController.currentScreen 

 

            UI.InitialScreen { } 

            UI.PairingScreen { } 

            UI.LoadScreen { } 

            UI.PlayerScreen { } 

            UI.WaitingScreen { } 

        } 

 

        UI.SettingsPopup { 

            id: _settings 

            x: (_window.width - width) * 0.5 

            y: (_window.height - height) * 0.5 

            z: 2 

            scale: _window.globalScale 

            onClosed: { 

                _window.mouseHidden = false 

            } 

        } 

    } 

 

    Component.onCompleted: { 

        UI.AppController.init(); 

        mouseHidden = true 



  

 
© helloQt.de    P a g e  4  o f  4  

 

        inactivityTimer.start() 

    } 

} 

 

How it works 

1. A MouseArea component detects user interactions such as clicks and presses. 

2. Each interaction resets the timer using the resetTimer() function. 

3. If no interaction occurs for 15 seconds, the onTriggered handler calls hideCursor(), 
making the cursor invisible. 

4. Any subsequent interaction restarts the timer and reactivates the cursor. 

5. Minor movements (due to environmental factors) are ignored using the checkMovement() 
function, which ensures only significant movements reset the timer.  

Enhancements and considerations  

◼ Keyboard activity: To further refine this feature, consider adding key event listeners to 
reset the timer on keyboard input. 

◼ Visual indicator: If needed, a subtle fade-out effect can be added before hiding the 
cursor. 

◼ User configuration: Allow users to configure the timeout duration in the application 
settings. 

Conclusion 
Using the Timer component in QML, we have successfully implemented an automatic cursor 
deactivation mechanism that improves the usability of a digital signage application. This 
approach can be extended to various other use cases requiring automated inactivity detection. 

By leveraging Qt robust QML framework, you can efficiently handle timed events and enhance 
user interactions within your applications. The Qt team at helloQt will be happy to help you with 
the implementation of your Qt project.  

 


