
helloQt is the Qt development
branch of Bergx2 GmbH

Fürstenstr. 15

80333 München
Germany

info@helloqt.de

https://www.helloqt.de

© helloQt.de P a g e 1 o f 7

Mastering screen management in Qt 6: A comprehensive guide
23 June 2024, by Lucas Moreira de Oliveira

Choosing the right approach for managing screens in a Qt 6 application is crucial for ensuring a
smooth and efficient user experience. Whether you are developing a simple app with a few
screens or a complex application with dynamic interfaces, understanding the various methods
available in Qt 6 will help you make informed decisions. In this article, we explore different
techniques for managing screens, delving into their implementations, advantages, and
disadvantages, and the scenarios where each method shines.

1. Dynamic screen creation with `component.createComponent` and `component.createObject`

One of the powerful features of Qt 6 is its ability to create components dynamically at runtime.
This is particularly useful when the number or type of screens is not known at compile time.

1.1 Implementation example

```qml 

import QtQuick 2.15 

import QtQuick.Controls 2.15 

 

ApplicationWindow { 

    visible: true 

    width: 640 

    height: 480 

 

    Button { 

        text: "Create Screen" 

        onClicked: createScreen() 

    } 

    function createScreen() { 

        var component = Qt.createComponent("Screen.qml"); 

        if (component.status === Component.Ready) { 

            var dynamicScreen = component.createObject(applicationWindow); 

            dynamicScreen.width = 640; 

            dynamicScreen.height = 480; 

        } 

    } 

    function destroyScreen(screen) { 

        if (screen !== null) { 

            screen.destroy(); 

https://www.helloqt.de


  

 
© helloQt.de    P a g e  2  o f  7  

 

        } 

    } 

} 

 

In this example, a new screen is created dynamically when the button is clicked. The 
`Qt.createComponent` function loads the QML component and `createObject` instantiates it. 

1.3 Advantages and disadvantages of dynamic screen 
creation 

Dynamic creation offers flexibility and efficient memory 
usage, as components are only  instantiated when 
needed. However, it can introduce a slight delay during 
creation and requires careful error handling to manage 
the component's loading state and potential failures. 

This method is ideal for scenarios where screens are not 
needed simultaneously, such as in multi-step forms or 
feature-rich applications with many optional modules. 

1.4 Further reading 

- Dynamic QML Object Creation from JavaScript: https://doc.qt.io/qt-6/qtqml-javascript-
dynamicobjectcreation.html 

2. Screen management with `Loader` 

The `Loader` element in Qt 6 provides a convenient way to manage the loading and unloading of 
QML components, enabling lazy loading and reducing the initial memory footprint of your 
application. 

2.1 Implementation example 

```qml 

import QtQuick 2.15

import QtQuick.Controls 2.15

ApplicationWindow {

 visible: true

 width: 640

 height: 480

 Loader {

 id: screenLoader

 anchors.fill: parent

 }

© helloQt.de P a g e 3 o f 7

 Button {

 text: "Load Screen"

 onClicked: screenLoader.source = "Screen.qml"

 }

}

Here, a `Loader` is used to load a screen when the button is clicked. The `Loader` can also unload
the component by setting its `source` property to an empty string.

2.2 Advantages and disadvantages of the loader in Qt 6

Using `Loader` simplifies memory management and improves performance by only loading
components when needed. However, frequent loading and unloading can lead to performance
bottlenecks, especially if the components are complex.

`Loader` is best suited for applications where screens are used intermittently and do not need to
be kept in memory once they are no longer visible.

2.3 Further reading

- Qt documentation on Loader: https://doc.qt.io/qt-6/qml-qtquick-loader.html

- Lazy loading in Qt Quick: https://doc.qt.io/qt-6/qtquick-performance.html#lazy-loading

3. Visibility based screen switching

Another straightforward approach is to create all screens at once and manage their visibility
using the `visible` property.

3.1 Implementation example

```qml 

import QtQuick 2.15 

import QtQuick.Controls 2.15 

 

ApplicationWindow { 

    visible: true 

    width: 640 

    height: 480 

 

    Rectangle { 

        id: screen1 

        widt

h: parent.width 

        height: parent.height 

        color: "red" 

        visible: true 



  

 
© helloQt.de    P a g e  4  o f  7  

 

    } 

 

    Rectangle { 

        id: screen2 

        width: parent.width 

        height: parent.height 

        color: "blue" 

        visible: false 

    } 

 

    Button { 

        text: "Switch Screen" 

        onClicked: { 

            screen1.visible = !screen1.visible; 

            screen2.visible = !screen2.visible; 

        } 

    } 

} 

 

In this example, two screens are created and their visibility is toggled with a button click. 

3.2 Advantages and disadvantages oft he visible property 

Managing screens with visibility is simple and quick to implement. However, it consumes more 
memory since all screens are kept in memory at all times, which can be a drawback for 
applications with many screens or resource-intensive components. 

This approach is suitable for small to medium-sized applications where the overhead of keeping 
all screens in memory is negligible. 

3.3 Further reading 

- Qt documentation on Property Binding: https://doc.qt.io/qt-6/qtqml-syntax-
propertybinding.html 

4. Stack-based navigation with `StackView` 

`StackView` provides a stack-based navigation model, where screens are pushed and popped 
from the stack, mimicking a typical navigation pattern found in mobile applications. 

4.1 Implementation example 

```qml 

import QtQuick 2.15

import QtQuick.Controls 2.15

ApplicationWindow {

 visible: true

© helloQt.de P a g e 5 o f 7

 width: 640

 height: 480

 StackView {

 id: stackView

 anchors.fill: parent

 initialItem: Screen1 {}

 }

 Button {

 text: "Push Screen"

 onClicked: stackView.push(Qt.resolvedUrl("Screen2.qml"))

 }

}

``` 

 

Here, a `StackView` manages the navigation between screens. The `initialItem` property sets the 
first screen, and additional screens are pushed onto the stack with the `push` method. 

4.2 Advantages and disadvantages of StackView 

`StackView` provides an intuitive way to manage navigation and maintains a clear history of 
screens, which is useful for back navigation. However, managing complex navigation stacks can 
become cumbersome and might impact performance if not handled properly. 

 

This method is recommended for applications with hierarchical navigation structures, such as 
settings menus or multi-step processes, where back navigation is required. 

4.3 Further reading 

- Qt documentation on StackView: https://doc.qt.io/qt-6/qml-qtquick-controls-stackview.html 

- Implementing navigation with StackView: https://doc.qt.io/qt-6/qtquickcontrols2-navigation.html 

5. Swipe-based navigation with `SwipeView` 

`SwipeView` provides a touch-friendly navigation model, ideal for mobile applications or touch 
interfaces where users can swipe between different screens. 

5.1 Implementation example 

```qml 

import QtQuick 2.15

import QtQuick.Controls 2.15

ApplicationWindow {

 visible: true

 width: 640

© helloQt.de P a g e 6 o f 7

 height: 480

 SwipeView {

 anchors.fill: parent

 Rectangle { color: "red"; width: parent.width; height: parent.height }

 Rectangle { color: "blue"; width: parent.width; height: parent.height

}

 Rectangle { color: "green"; width: parent.width; height: parent.height

}

 }

}

In this example, `SwipeView` is used to allow users to swipe between three different screens,
represented as `Rectangle` components with different colours.

5.2 Advantages and disadvantages of SwipeView

`SwipeView` is highly intuitive and easy to use, especially for mobile applications. However, it is
less suited for desktop applications where swiping is not a common interaction method.
`SwipeView` is ideal for mobile applications, image galleries, or any interface where quick and
natural navigation between screens is desired.

5.3 Further reading

- Qt Documentation on SwipeView: https://doc.qt.io/qt-6/qml-qtquick-controls-swipeview.html

6. Tab-based navigation with `TabBar`

`TabBar` provides a tabbed navigation model, where users can switch between different tabs,
each representing a different screen or section of the application.

6.1 Implementation example

import QtQuick 2.15

import QtQuick.Controls 2.15

ApplicationWindow {

 visible: true

 width: 640

 height: 480

 TabBar {

 id: tabBar

 width: parent.width

 TabButton {

 text: "Red"

 onClicked: stackView.replace(Qt.resolvedUrl("RedScreen.qml"))

 }

 TabButton {

© helloQt.de P a g e 7 o f 7

 text: "Blue"

 onClicked: stackView.replace(Qt.resolvedUrl("BlueScreen.qml"))

 }

 TabButton {

 text: "Green"

 onClicked: stackView.replace(Qt.resolvedUrl("GreenScreen.qml"))

 }

 }

 StackView {

 id: stackView

 anchors.top: tabBar.bottom

 anchors.left: parent.left

 anchors.right: parent.right

 anchors.bottom: parent.bottom

 initialItem: RedScreen {}

 }

}

In this example, `TabBar` is used in conjunction with `StackView` to create a tabbed interface.
Each tab button replaces the current screen in the `StackView` with a new one.

6.2 Advantages and disadvantages of TabBar

`TabBar` offers a familiar and easy-to-use navigation model, making it ideal for desktop
applications or any application with clearly defined sections. However, it may not be as suitable
for applications with a large number of screens or for those requiring a more dynamic navigation
flow. `TabBar` is perfect for settings pages, dashboards, or applications with a few primary
sections.

6.3 Further reading

- Qt Documentation on TabBar: https://doc.qt.io/qt-6/qml-qtquick-controls-tabbar.html

- Qt Documentation on TabButton: https://doc.qt.io/qt-6/qml-qtquick-controls-tabbutton.html

7. Conclusion

Choosing the right screen management approach in Qt 6 depends on the specific needs of your
application. Dynamic creation with `component.createComponent` and
`component.createObject` offers flexibility and efficiency for dynamic interfaces. `Loader`
provides a simple way to manage memory usage by loading screens on demand. Visibility-based
switching is quick to implement but can consume more memory. `StackView` is ideal for
applications with hierarchical navigation. `SwipeView` and `TabBar` offer intuitive navigation
models for mobile and desktop applications, respectively.

Understanding these methods and their trade-offs will help you build more efficient and
responsive Qt 6 applications, tailored to the unique requirements of your projects.

